Handbuch Data Science mit Python

Buch

VanderPlas, Jake

  • Titel: Handbuch Data Science mit Python : Grundlegende Tools für die Arbeit mit Daten / Jake VanderPlas ; Deutsche Übersetzung von Knut Lorenzen und Jørgen W. Lang
  • Originaltitel: Python Data Science Handbook, 2nd edition
  • Person(en): VanderPlas, Jake [Verfasser*in] ; Lorenzen, Knut [Übersetzung] ; Lang, Jørgen W. [Übersetzung]
  • Organisation(en): O'Reilly Media Inc. [Verlag] ; Dpunkt.Verlag [Verlag]
  • Ausgabe: 1. Auflage
  • Sprache: Deutsch
  • Originalsprache: Englisch
  • Umfang: 576 Seiten ; 24 cm
  • Erschienen: Sebastopol Heidelberg : O'Reilly, 2024
  • ISBN/Preis: 978-3-96009-225-4 Broschur : EUR 49.90
  • Signatur: LERNEN und ARBEITEN > IT und Technik
  • Jkd 0 PYTH VAND
  • Achtung! Neue Medien können einen abweichenden Standort aufweisen. Bitte prüfen Sie den genauen Standort in der Verfügbarkeitsanzeige.

Inhalt: Das bewährte Standardwerk jetzt in vollständig aktualisierter Neuauflage Behandelt die neuesten Versionen von IPython, NumPy, pandas, Matplotlib und Scikit-Learn Die leicht nachvollziehbaren Beispiele helfen Ihnen bei der erfolgreichen Einrichtung und Nutzung der Data-Science-Tools Inklusive Jupyter Notebooks, die es Ihnen ermöglichen, den Code direkt beim Lesen auszuprobieren Für viele Data Scientists ist Python die Sprache der Wahl, weil zahlreiche ausgereifte Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar sind. Jake VanderPlas versammelt in dieser 2. Auflage seines Standardwerks alle wichtigen Datenanalyse Tools in einem Band und erläutert deren Einsatz in der Praxis. Beschrieben werden IPython, Jupyter, NumPy, Pandas, Matplotlib, Scikit Learn und verwandte Werkzeuge. Für Datenanalystinnen und analysten und Data Cruncher mit Python Kenntnissen ist dieses umfassende Handbuch von unschätzbarem Wert bei der Erledigung ihrer täglichen Aufgaben. Dazu gehören die Manipulation, Umwandlung und Bereinigung von Daten, die Visualisierung verschiedener Datentypen sowie die Nutzung von Daten zum Erstellen von Statistiken und Machine Learning Modellen. Dieses Handbuch beschreibt die folgenden Tools: IPython und Jupyter bieten eine Umgebung für Berechnungen, die von vielen Data Scientists genutzt wird NumPy stellt das ndarray zum effizienten Speichern und Bearbeiten dicht gepackter Datenarrays bereit Pandas verfügt über das DataFrameObjekt für die Speicherung und Manipulation gelabelter und spaltenorientierter Daten Matplotlib ermöglicht die flexible und vielseitige Visualisierung von Daten ScikitLearn unterstützt bei der Implementierung der wichtigsten und gebräuchlichsten Algorithmen für das Machine Learning "Jake beschreibt weit mehr als die Grundlagen dieser Open-Source-Tools; er erläutert die zugrunde liegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen." -- Brian Granger, Physikprofessor und Mitbegründer des Jupyter-Projekts