The handbook of Data Schience and AI

Buch

Munro, Katherine

  • Titel: The handbook of Data Schience and AI : generate value from data with machine learning and data analytics / Katherine Munro, Stefan Papp, Zoltan Toth, Wolfgang Weidinger, Danko Nikolić [und 16 weitere]
  • Person(en): Munro, Katherine [Verfasser*in] ; Papp, Stefan [Verfasser*in] ; Toth, Zoltan [Verfasser*in] ; Weidinger, Wolfgang [Verfasser*in] ; Nikolić, Danko [Verfasser*in]
  • Organisation(en): Hanser Publications [Verlag]
  • Ausgabe: 2., aktualisierte und erweiterte Auflage
  • Sprache: Englisch
  • Originalsprache: Englisch
  • Umfang: XXIII, 845 Seiten : Illustrationen ; 25 cm, 1730 g
  • Erschienen: Munich : Hanser Publishers, 2024
  • ISBN/Preis: 978-1-56990-934-8 Festeinband : circa EUR 79.99 (DE) (freier Preis), circa EUR 82.30 (AT) (freier Preis)
  • Bestellnummer: Bestellnummer: 553/00934
  • Schlagwörter: Datenanalyse ; Big Data ; Maschinelles Lernen ; Datenbanksystem ; Data Science ; Künstliche Intelligenz
  • Signatur: LERNEN und ARBEITEN > IT und Technik
  • Jbd 0 MUNR•/21 Englisch Jbd 0

Inhalt: Data Science, Big Data, Artificial Intelligence and Generative AI are currently some of the most talked-about concepts in industry, government, and society, and yet also the most misunderstood. This book will clarify these concepts and provide you with practical knowledge to apply them. Using exercises and real-world examples, it will show you how to apply data science methods, build data platforms, and deploy data- and ML-driven projects to production. It will help you understand — and explain to various stakeholders — how to generate value from such endeavors. Along the way, it will bring essential data science concepts to life, including statistics, mathematics, and machine learning fundamentals, and explore crucial topics like critical thinking, legal and ethical considerations, and building high-performing data teams. Readers of all levels of data familiarity — from aspiring data scientists to expert engineers to data leaders — will ultimately learn: how can an organization become more data-driven, what challenges might it face, and how can they as individuals help make that journey a success. The team of authors consists of data professionals from business and academia, including data scientists, engineers, business leaders and legal experts. All are members of the Vienna Data Science Group (VDSG), an NGO that aims to establish a platform for exchanging knowledge on the application of data science, AI and machine learning, and raising awareness of the opportunities and potential risks of these technologies.